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INTRODUCTION 

In the last few decades, the demand for energy 

has dramatically increased as the population 

expands worldwide and the need for efficient 

energy storages is imperative to face the 

forthcoming energy crisis [1]. The terms of gas 

storage and separation are closely related to 

clean energy and environmental protection in 

the modern society [1]. Therefore, the 

development of renewable, safe, clean, and 

sustainable energy storage and conversion 

technologies has thus become a research topic of 

interest. Even though porous materials (e.g. 

zeolites, activated charcoals and porous glass) 

are being widely used in many applications, the 

field of porous materials showed more attraction 

to energy researchers. 

One of the well study materials in the fields of 

energy storage is metal-organic frameworks 

(MOFs) [1].The structure of MOFs, also known 

as porous coordination polymers, is consists of 

metal ions and organic ligand (e.g. carboxylates, 

tetrazolates, sulfonates) connected via 

coordination bonds into a three-dimensional 

structure [2]. This bonding offers both organic 

and inorganic readily active sites in their core 

[3]. MOFs showed high porosity and thermal 

stability [4] and have been used in a wide range 

of applications including catalysis [5] 

magnetism [6] luminescence [7], and 

particularly in gas storage [8] and separation [9]. 

 

Figure1. Assembly of metal-organic frameworks 

(MOFs) by the copolymerization of metal ions with 

organic linkers 

POROSITY OF MOFS 

Porosity of MOFs comes from coordinating 

linkers and space-inefficient packing of the 

polymer chains [10]. For example, spirocyclic 
and tetrahedral compounds have been successful 

used in the preparation of soluble and insoluble 

micrporos polymers [11, 12], which can be used 
to introduce a wide range of chemical 

functionalities into the pores [13]. Furthermore, 

the embedding of transition metal sites into 

MOPs could open up second-generation porous 
materials with useful combined chemical and 

physical properties [13] and offers potential as 
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heterogeneous catalysts for various organic 

reactions such as general hydrogenations [14], 
oxidation of thiols [15], Suzukie Miyaura 

couplings [16] and so forth [17]. The 

introduction of metal catalytic moieties into 
functional MOPs has at least two advantages: i) 

the homogeneous distribution of active metal 

nanoparticles (NPs) is enabled by the strong 

interaction with the functional porous supports, 
which has been believed to give effective 

catalytic activity and selectivity [18]; ii) the 

metal leaching could be greatly suppressed in 
the process of catalyst separation for recycling 

[19]. Therefore it is highly desirable to 

investigate methods to incorporate a variety of 
functionalities into MOPs. 

MOFS AS GAS STORAGE AND SEPARATION  

In this energy and environmental scenario, the 
selective capture of CO2 from flue gases or 

during the purification of natural gas, for 

example CO2/N2 (post combustion), CO2/H2 
(pre-combustion), CO2/O2 (air separation), and 

CO2/CH4 (natural gas purification), poses an 

exigent challenge. Literature reports indicate 

that the principle of linker pre-functionalization 
can be well-exploited to develop multifunctional 

MOFs [20]. In recent times, quite a few 

coherent design-principle-based strategies have 
been developed in this regime [21] An amine (-

NH2) decorated/tethered MOF could display 

easy-on/easy-off reversible CO2 uptake 

phenomenon ideally amalgamated with 
selectivity adsorption attribute.[22] Amine-rich 

nano-space has been proficiently harnessed in 

quite a few MOFs culminating in the CO2-
selective interplay of the framework voids, and 

consequently letting them emerge as one of the 

cornerstone materials’ class aimed at 
environmental standpoint of manoeuvring 

energy-efficient separations [23]. A large 

number of MOF materials with tremendous 

structures and specific applications have been 
constructed through the judicious combination 

of metal centers and organic linkers. Moreover, 

various functional groups can be readily 
incorporated into MOFs via either ligand design 

or post-synthetic modifications [24], which 

afford a unique advantage over other traditional 
porous materials. 

MOFS AS HYDROGEN STORAGE 

From 2003, when the MOFs reported as 
hydrogen adsorbent, over 200 MOFs have been 

studied for their potential ability as hydrogen 

gas storages [25]. The physicochemical 

properties of those MOFs have been found to 

enhance hydrogen storage capacity in 

comparison to other porous materials [26]. The 
main aim of most of those studies is to explore 

MOFs that have high hydrogen uptake at low 

temperature and atmospheric pressure (77 K and 
1 atm), and these studies can be very useful and 

instructive at this early stage of exploration for 

hydrogen storage materials [27]. 

 

Figure2. Single-crystal x-ray structures of MOF 

MOFS AS CARBON DI OXIDE STORAGE 

The concern of worldwide warming has drawn 

unexampled public attention to the problem of 
dioxide emission. Greenhouse gas, generated 

principally through combustion of fuel, 

accumulates at Associate in nursing dreadful 
pace thanks to the speedy enlargement of the 

energy consumption worldwide. To stabilize 

dioxide levels within the atmosphere, it's 

imperative to develop viable greenhouse gas 
capture and sequestration technologies. Current 

technologies square measure dominated by 

amine-based web-scrubbing systems, that square 
measure pricey and inefficient [28]. Surface 

assimilation of dioxide victimisation extremely 

porous solids has been of accelerating interest 
for greenhouse gas capture applications,[29] and 

porous MOFs are positioned at the forefront 

thanks to their high surface areas along side 

functionalizable pore walls [30]. to boost 
dioxide uptake in porous MOFs, the 

incorporation of pendant alkyl group alkane 

functionalities inside the pores has recently been 
pursued either by the direct use of Associate in 

Nursing alkane primarily based bridging 

matter,[31] or via post artificial approaches [32]. 

 

Figure3. Crystalline structure, the cavities are 

highlighted with yellow spheres 

MOFS AS METHANE STORAGE 

Similarly as with hydrogen, methane is likewise 

viewed as a perfect vitality gas. Contrasted with 
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oil, it can give considerably more vitality in 

view of its higher hydrogen-to-carbon 

proportion, and has much lower carbon 

emanation. What's more, stores of methane-

containing gaseous petrol are more boundless 

internationally than those of oil, and its 

refinement (filtration) to a vitality fuel is a lot 

more straightforward than that of rough oil to 

gas or diesel powers. Methane is additionally 

created by decay of natural waste and by 

microscopic organisms in the guts of ruminants 

and termites. As far as close term down to earth 

use and advancements vital for 

commercialization, methane seems, by all 

accounts, to be an all the more encouraging 

option for portable applications [33]. The 

primary detailed estimation of methane take-up 

by a permeable MOF could go back to as ahead 

of schedule as 1997 revealed by Kitagawa and 

collaborators however with extremely restricted 

methane Uptake [34]. Be that as it may, the field 

of methane stockpiling on MOFs has not created 

as fast as the hydrogen-stockpiling field, and 

concentrates on methane stockpiling in 

permeable MOFs are far less various than 

hydrogen [33]. 

CONCLUSION 

Porous MOFs will continue to draw interest and 

inquiry by both academia and industry. They 

have shown great promise for the adsorptive 

storage of hydrogen, methane, and carbon 

dioxide in clean energy applications. 
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